Tuesday, April 20, 2010

Scuba diving


Hazards and dangers


According to a 1970 North American study, diving was (on a man-hours based criteria) 96 times more dangerous than driving an automobile.
[11] According to a 2000 Japanese study, every hour of recreational diving is 36 to 62 times riskier than automobile driving.[12]

Injuries due to changes in air pressure
For a full list, see
Diving hazards and precautions.
Divers must avoid injuries caused by changes in air pressure. The weight of the water column above the diver causes an increase in air pressure in any compressible material (
wetsuit, lungs, sinus) in proportion to depth, in the same way that atmospheric air causes a pressure of 101.3 kPa (14.7 pounds-force per square inch) at sea level. Pressure injuries are called barotrauma[3] and can be quite painful, in severe cases causing a ruptured eardrum or damage to the sinuses. To avoid them, the diver equalizes the pressure in all air spaces with the surrounding water pressure when changing depth. The middle ear and sinus are equalized using one or more of several techniques, which is referred to as clearing the ears.
The mask is equalized by periodically exhaling through the nose.
If a drysuit is worn, it too must be equalized by inflation and deflation, similar to a
buoyancy compensator.
If properly equalized, the sinus passages can stand the increased pressure of the water with no problems. However, congestion due to cold, flu or allergies may impair the ability to equalize the pressure. This may result in permanent damage to the eardrum. Although there are many dangers involved in scuba diving, divers can decrease the dangers through proper training and education. Open-water certification programs highlight diving physiology, safe diving practices, and diving hazards.

Effects of breathing high pressure gas

Decompression sickness
Main article:
Decompression sickness
The diver must avoid the formation of gas bubbles in the body, called decompression sickness[3] or 'the bends', by releasing the water pressure on the body slowly while ascending and allowing gases trapped in the bloodstream to gradually break solution and leave the body, called "off-gassing." This is done by making safety stops or decompression stops and ascending slowly using dive computers or decompression tables for guidance. Decompression sickness must be treated promptly, typically in a recompression chamber. Administering enriched-oxygen breathing gas or pure oxygen to a decompression sickness stricken diver on the surface is a good form of first aid for decompression sickness, although fatality or permanent disability may still occur.[13]

Nitrogen narcosis
Main article:
Nitrogen narcosis
Nitrogen narcosis or inert gas narcosis is a reversible alteration in consciousness producing a state similar to alcohol intoxication in divers who breathe high pressure gas at depth.[3] The mechanism is similar to that of nitrous oxide, or "laughing gas," administered as anesthesia. Being "narced" can impair judgment and make diving very dangerous. Narcosis starts to affect some divers at 66 feet (20 meters). At 66 feet (20 m), Narcosis manifests itself as slight giddiness. The effects increase drastically with the increase in depth. Almost all divers are able to notice the effects by 132 feet (40 meters). At these depths divers may feel euphoria, anxiety, loss of coordination and lack of concentration. At extreme depths, hallucinogenic reaction and tunnel vision can occur. Jacques Cousteau famously described it as the "rapture of the deep". Nitrogen narcosis occurs quickly and the symptoms typically disappear during the ascent, so that divers often fail to realize they were ever affected. It affects individual divers at varying depths and conditions, and can even vary from dive to dive under identical conditions. However, diving with trimix or heliox dramatically reduces the effects of inert gas narcosis.

Oxygen toxicity
Main article:
Oxygen toxicity
Oxygen toxicity occurs when oxygen in the body exceeds a safe "partial pressure" (PPO2).[3] In extreme cases it affects the central nervous system and causes a seizure, which can result in the diver spitting out his regulator and drowning. Oxygen toxicity is preventable provided one never exceeds the established maximum depth of a given breathing gas. For deep dives (generally past 180 feet / 55 meters), divers use "hypoxic blends" containing a lower percentage of oxygen than atmospheric air. For more information, see Oxygen toxicity.

Refraction and underwater vision
Main article:
Underwater vision

A diver wearing an Ocean Reef full face mask
Water has a higher
refractive index than air; it's similar to that of the cornea of the eye. Light entering the cornea from water is hardly refracted at all, leaving only the eye's crystalline lens to focus light. This leads to very severe hypermetropia. People with severe myopia, therefore, can see better underwater without a mask than normal-sighted people.
Diving masks and diving helmets and fullface masks solve this problem by creating an air space in front of the diver's eyes.[2] The refraction error created by the water is mostly corrected as the light travels from water to air through a flat lens, except that objects appear approximately 34% bigger and 25% closer in salt water than they actually are. Therefore total field-of-view is significantly reduced and eye-hand coordination must be adjusted.
(This affects underwater photography: a camera seeing through a flat window in its casing is affected the same as its user's eye seeing through a flat mask window, and so its user must focus for the apparent distance to target, not for the real distance.)
Divers who need corrective lenses to see clearly outside the water would normally need the same prescription while wearing a mask. Generic and custom corrective lenses are available for some two-window masks. Custom lenses can be bonded onto masks that have a single front window.
A "
double-dome mask" has curved windows in an attempt to cure these faults, but this causes a refraction problem of its own.
Commando
frogmen concerned about revealing their position when light reflects from the glass surface of their diving masks may instead use special contact lenses to see underwater.
As a diver descends, he must periodically exhale through his nose to equalize the internal pressure of the mask with that of the surrounding water. Swimming goggles are not suitable for diving because they only cover the eyes and thus do not allow for equalization. Failure to equalise the pressure inside the mask may lead to a form of barotrauma known as mask squeeze.
[2][14]

Controlling buoyancy underwater

Diver under the Salt Pier in Bonaire.
To dive safely, divers must control their rate of descent and ascent in the water.
[3] Ignoring other forces such as water currents and swimming, the diver's overall buoyancy determines whether he ascends or descends. Equipment such as the diving weighting systems, diving suits (Wet, Dry & Semi-dry suits are used depending on the water temperature) and buoyancy compensators can be used to adjust the overall buoyancy.[2] When divers want to remain at constant depth, they try to achieve neutral buoyancy. This minimizes gas consumption caused by swimming to maintain depth.
The downward force on the diver is the
weight of the diver and his equipment minus the weight of the same volume of the liquid that he is displacing; if the result is negative, that force is upwards. Diving weighting systems can be used to reduce the diver's weight and cause an ascent in an emergency. Diving suits, mostly being made of compressible materials, shrink as the diver descends, and expand as the diver ascends, creating buoyancy changes. The diver can inject air into some diving suits to counteract the compression effect and squeeze. Buoyancy compensators allow easy and fine adjustments in the diver's overall volume and therefore buoyancy. For open circuit divers, changes in the diver's lung volume can be used to adjust buoyancy.

Avoiding losing body heat

Dry suit for reducing exposure
Main article:
Diving suit
Water conducts heat from the diver 25 times[15] better than air, which can lead to hypothermia even in mild water temperatures.[3] Symptoms of hypothermia include impaired judgment and dexterity[16], which can quickly become deadly in an aquatic environment. In all but the warmest waters, divers need the thermal insulation provided by wetsuits or drysuits.[2]
In the case of a wetsuit, the suit is designed to minimize heat loss. Wetsuits are generally made of neoprene that has small gas cells, generally nitrogen, trapped in it during the manufacturing process. The poor thermal conductivity of this expanded cell neoprene means that wetsuits reduce loss of body heat by conduction to the surrounding water. The neoprene in this case acts as an insulator.
The second way in which wetsuits reduce heat loss is to trap a thin layer of water between the diver's skin and the insulating suit itself. Body heat then heats the trapped water. Provided the wetsuit is reasonably well-sealed at all openings (neck, wrists, legs), this reduces water flow over the surface of the skin, reducing loss of body heat by convection, and therefore keeps the diver warm (this is the principle employed in the use of a "Semi-Dry")

Spring suit and steamer
In the case of a drysuit, it does exactly that: keeps a diver dry. The suit is sealed so that frigid water cannot penetrate the suit. Drysuit undergarments are often worn under a drysuit as well, and help to keep layers of air inside the suit for better thermal insulation. Some divers carry an extra gas bottle dedicated to filling the dry suit. Usually this bottle contains
argon gas, because of its better insulation as compared with air.[17]
Drysuits fall into two main categories neoprene and membrane; both systems have their good and bad points but generally their thermal properties can be reduced to:
Membrane: usually a trilaminate construction; owing to the thinness of the material (around 1 mm), these require an undersuit, usually of high insulation value if diving in cooler water.
Neoprene: a similar construction to wetsuits; these are often considerably thicker (7–8 mm) and have sufficient insulation to allow a lighter-weight undersuit (or none at all); however on deeper dives the neoprene can compress to as little as 2 mm thus losing a proportion of their insulation. Compressed or crushed neoprene may also be used (where the neoprene is pre-compressed to 2–3 mm) which avoids the variation of insulating properties with depth.

Avoiding skin cuts and grazes
Diving suits also help prevent the diver's skin being damaged by rough or sharp underwater objects, marine animals or coral.

No comments:

Post a Comment